Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

.

-

4

Flowering in a Ponderosa Pine Provenance Plantation in Eastern Nebraska

Ralph A. Read and John A. Sprackling¹

Nebraska plantation ponderosa pines from 50 provenances exhibited variations in flower sex, northern sources producing predominately ovulate strobili and southern sources predominately staminate. Relative proportions of ovulate and staminate strobili produced appear to be influenced by photoperiod length as expressed by differences between latitudes of seed origin and plantation location.

Keywords: *Pinus ponderosa, seed sources, flowering strobili*

MANAGEMENT IMPLICATIONS

Results of this study on flowering are useful for seed collectors, trees breeders, and those involved in establishing seed orchards of ponderosa pine in the central Plains. If production of relatively large quantities of both ovulate and staminate strobili is desired at any early age, the selection of seed sources should be from native stands in north-central Nebraska or eastcentral Montana. Seed sources from these areas have been among the fastest growing in most provenance plantations established throughout the Plains area.

INTRODUCTION

Flowering at an early age is an important trait in tree selection for breeding programs. Little information on this trait is available for the eastern range of ponderosa pine (*Pinus ponderosa var. scopulorum Engelm.*). Past observations in eastern Nebraska indicate that planted ponderosa pine usually begins flowering later than certain origins of jack pine (*P. banksiana Lamb.*) and Scots pine (*P. sylvestris* L.), which can produce abundant pollen and conelets at 4 to 6 years of age.² Flowering at 8 years field age is the average for ponderosa pine according to Wang (1977), but Righter (1939) observed staminate flowering at 2 years and ovulate flowering at 4 years on var. ponderosa at Placerville, Calif.; he observed strobili at 5 years on var. scopulorum.

To obtain data on flowering, a 13-year-old provenance plantation of ponderosa pine was studied in 1978 at the University of Nebraska's Horning State Farm, in eastern Nebraska. Some flowering had been observed in this plantation as early as 1973, at age 8 years. Observations of the plantation in early spring 1978 indicated copious flowering for the first time. Accordingly, in 1978, the frequency and quantity of ovulate and staminate strobili production were determined for each seed source in the plantation.

MATERIAL AND METHODS

The 8-acre plantation was established April 1968 with 2+1 seedling transplants of 50 well-distributed provenances (fig. 1) of ponderosa pine. Forty-seven sources are var. scopulorum of eastern range natural stands, known as Rocky Mountain ponderosa pine; the other three sources are var. ponderosa from western Mon-

¹Principal Silviculturist, now retired, and Forestry Research Technician. respectively, Rocky Mountain Forest and Range Experiment Station; headquarters is in Fort Collins, in cooperation with Colorado State University. Research reported here was conducted at the Station's Research Work Unit at Lincoln, Nebr., in cooperation with the University of Nebraska.

²Where an age is mentioned, it is total age from seed, unless the term "field age" is used.

tana. The plantation, one of many in a regional study of genetic variation, was established primarily to evaluate resistance to the needle blight fungus Dothistroma pini.

The experimental layout consists of 10-tree, linear plots of each seed source, with six replicates. Spacing between trees is 8 feet (2.4 m) within rows and 13 feet (4.0 m) between rows. The plantation is at 41.0° N. latitude, 95.9° W. longitude, at an elevation of 1,100 feet (330 m), on a west-facing slope of deep, silt loam soil derived from loess. The growing season averages 170 days. Mean annual precipitation is 30 inches (76 cm).

Weeds were controlled from 1968 through 1972 by mowing between rows and by applying herbicide spray in early spring along both sides of tree rows. Maintenance since 1972 has involved periodic mowing only. In early summer of 1976 and 1977, the trees were sprayed with an insecticide to reduce the effect of tip moth (*Rhyacionia bushnelli Busck*), which was interfering with the disease research objectives.

During mid-May of 1978, the rating system described below was used to evaluate flowering on each tree in the plantation, once to count ovulate strobili, and again to count clusters of staminate strobili. In ponderosa pine, ovulate strobili are usually produced in the upper crown, where 1 to 4 of them may occur at the terminal of each elongating branch. Staminate strobili usually cluster at the base of new growth on lateral branches, in lower and middle crown. The rating system equated a cluster of staminate strobili to one ovulate strobilus.

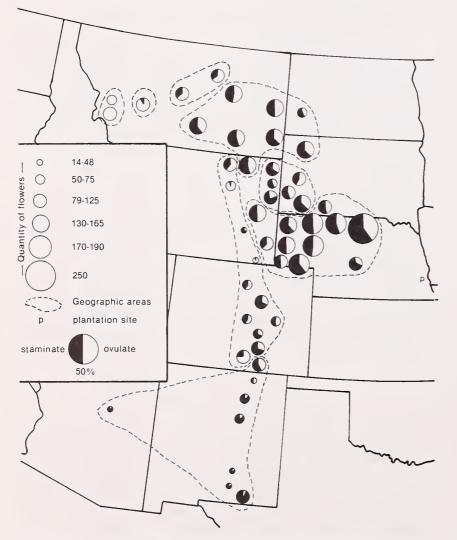


Figure 1.—Quantity of flowering and percent distribution by sex, by seed sources. Seed sources are grouped into geographic areas.

The occasional solitary staminate strobilus was counted if it was the only evidence of flowering on a tree. The rating system for quantity of flowering was as follows:

Flowering	Number of strobili	Rating
None	0	0
Light	1-10	1
Medium	11 -20	2
Heavy	≥21	3

Tabulations were made of the number and percent of trees in each seed source (1) bearing strobili of either or both sexes, (2) with ovulate strobili, and (3) with staminate strobili. Quantity of flowering (ovulate, staminate, and total) was expressed as a percent of the plantation mean after average tree ratings for each seed source were calculated. Correlations of flowering with seed source mean tree heights and with latitude and elevation of seed sources were investigated.

In late April 1982, one replication of the same plantation was reexamined to see if the flowering pattern was still the same or had changed.

RESULTS

Flowering data are arranged by eight geographic areas, so that geographic area means can readily be compared (table 1). Within each area, sources performed similarly in regard to total flower production and distribution of staminate and ovulate flowers. These areas are similar to the clusters derived from nursery seedling analyses of these same seed sources (Read 1980).

Percent of Trees Flowering

Sixty-five percent of all trees had flowers of either or both sexes (table 1) while 35% had no flowers. Differences in flowering among the geographic areas were readily apparent (table 1, fig. 1). Percent of flowering trees was generally highest among sources from Montana and the central Plains. Flowering was least among sources from higher elevations in the central Rocky Mountains and among most sources from the southern Rocky Mountains.

Seed sources with the highest percent of trees flowering were 720 and 721 from the Niobrara River area in northern Nebraska; 852 and 853 from the Pine Ridge of northwestern Nebraska; and 819 from the Bitterroot Valley of Montana. Seed sources with the lowest percent of trees flowering were 766 and 869 of southern New Mexico and Arizona, and 848 and 857 from the central Rocky Mountains in southern Wyoming.

Distribution of Flowering by Sex

The 1,920 flowering trees comprised 3 groups: 40% produced male and female strobili, 32% produced female strobili only, and 28% produced male strobili

Table 1Location data of seed sources,	13-year tree heights, and flowering data of ponderosa pine
by seed sources in a	n eastern Nebraska provenance plantation

Geographic area	Source number	State	Latitude	Elevation	13-year height (as percent of plantation x̄)	Totai trees	Trees' with strobili	Trees¹ with ♀ strobiii	Trees' with <i>ः</i> strobili		ity of flower ont of planta Staminate	tion x)
var. ponderosa				feet		number		percent				
Bitterroot Valley	819 820 Area mean x	Mont. Mont.	45.9 46.2	4100 4500	105 98 102	59 57	90 79 84	90 79 84	0 0 0	189 121 155	0 0 0	88 57 73
Transition	816	Mont.	46.6	4500	108	60	80	80	8	185	13	97
var. scopulorum												
North-central Montana	813 815 Area mean x	Mont. Mont.	47.9 47.1	4700 4800	91 102 97	61 59	64 61 63	57 53 55	25 34 29	111 113 112	56 61 58	82 86 84
Northern Plains	811 826 702 822 824 827 704 832 Area mean x	Mont. Mont. N. Dak. Mont. Mont. S. Dak. Wyo.	47.6 47.0 46.9 46.2 45.9 45.8 45.8 45.6 44.9	2900 2750 2500 3800 3400 3800 3450 3900	112 105 101 119 110 108 102 106 108	60 60 60 60 61 57 60	83 75 47 83 73 77 77 78 74	75 67 30 57 60 46 53 58 58	57 60 30 72 63 66 68 57 59	169 152 63 121 139 98 117 127 123	135 130 66 165 141 144 168 125 134	151 141 64 144 140 122 144 126 129
Black Hills	833 834 835 837 838 840 Area mean x	Wyo. Wyo. S. Dak. S. Dak. S. Dak. S. Dak.	44_6 44.4 43 9 44 3 43 9 43.7	4000 55 00 5080 6300 5680 4200	104 94 101 98 94 106 100	59 57 59 59 58 59	64 49 78 64 75 63	37 28 20 69 52 47 42	58 35 44 46 48 68 50	75 50 38 126 111 101 85	134 70 111 90 115 152 112	107 61 77 111 113 128 100
Central Plains	849 851 852 853 854 721 720 856 846 845 723 758 Area mean ₹	Wyo. Nebr. Nebr. S. Dak. Nebr. Nebr. Nebr. Nebr. Nebr. Nebr.	43.0 42.7 42.5 42.9 43.2 42.9 42.7 41.4 42.2 41.5 41.8 41.2	5200 4200 3800 3600 2700 2300 2900 4200 5100 4600 4500	100 101 104 108 106 115 116 98 98 91 101 101 101 103	59 60 60 59 61 60 58 56 60 59 60	76 77 90 66 85 98 67 66 68 81 83 79	64 47 77 49 74 82 38 64 50 63 57 62	51 65 65 51 67 93 62 38 42 59 77 61	133 104 185 170 105 168 199 76 168 98 139 125 139	1 20 161 151 159 113 177 260 140 83 89 130 196 148	126 134 167 164 109 173 232 110 123 93 134 163 144
Central Rocky Mountains	829 831 848 857 760 859 762 763 860 861 764 Area mean x	Wyo. Wyo. Wyo. Colo. Colo. Colo. Colo. Colo. Colo. Colo.	44.8 44.2 42.6 41.2 40.2 39.4 39.4 39.1 38.6 37.9 37.9	5100 5800 6900 7700 8400 6500 5900 7800 6500 6600 8800	94 87 80 74 91 96 90 88 94 98 89	59 60 59 57 59 55 61 55 60	66 57 36 40 54 62 53 56 49 71 65 55	56 57 20 39 31 32 44 25 29 65 40	34 3 29 4 25 51 31 23 31 63 15 29	117 101 37 70 63 63 83 39 67 119 76	69 3 153 4 116 64 56 72 132 33 68	91 49 45 38 54 91 63 69 57 102 73 67
Southern Rocky Mountains	765 862 863 864 869 766 767 768 Area mean x	Colo. N. Mex. N. Mex. N. Mex. Ariz. N. Mex. N. Mex. N. Mex.	37.3 37.0 35.8 35.5 35.2 33.3 33.0 32.2	7000 7350 6400 7000 7300 6400 5800	106 91 104 96 104 101 104 106 102	61 58 59 56 50 53 54 60	70 47 46 45 30 13 44 57 45	39 31 12 5 4 2 6 7 14	59 24 46 45 28 13 43 57 40	92 48 17 13 5 7 11 10 25	118 45 90 88 58 22 73 141 79	106 46 56 53 33 15 44 79 56
Plantation totals Plantation means					100 (12.8 feet)	2931	65	47	44	100 (0.84)	100 (0.96)	100 (1.80)

¹Percent of trees with ovulate strobili plus percent of trees with staminate strobili may exceed percent of trees with strobili because many flowering trees had both sexes of strobili.

²Quantity of flowering is expressed by summing all individual tree ratings (0, 1, 2, 3), dividing by the number of trees and arriving at an average tree rating for each source. Ovulate, staminate, and total flowering is expressed as a percent of plantation mean. Plantation average tree ratings are in parentheses.

only. Thus, 60% of flowering trees produced only one sex of strobili at age 13. Of the trees containing ovulate strobili, only 21% were rated as flowering heavily, while 35% rated medium, and 44% light flowering. Of the trees containing staminate strobili, 48% were rated as flowering heavily, 20% medium, and 32% light.

Flowering categorized by sex of the strobili was strikingly different among geographic areas (table 1, fig. 1). Ovulate flowering was predominant on the var. ponderosa sources from the Bitterroot Valley of Montana; sources 819 and 820 were exclusively ovulate, and the Transition source 816 was high in ovulate but low in staminate flowers. Ovulate flowering was moderate to heavy on most other Montana sources and on sources of the Niobrara River area of northern Nebraska. Ovulate flowering was generally low on most central Rocky Mountain sources, and very low on all southern Rocky Mountain sources.

In contrast, staminate flowering was lacking or very light on five seed sources of western and north-central Montana. The central Rocky Mountain sources, moderately low in oxulate flowering, were also very low in staminate flowering. All southern Rocky Mountain sources produced more staminate than ovulate strobili. The highest percent of trees with staminate strobili came from sources of the central Plains in Nebraska, and some sources in the northern Plains of Montana.

Quantity of Flowering

The total quantity of flowering as expressed by the average of all individually rated trees, yielded a plantation mean of 1.80. The average ovulate (0.84) and staminate (0.96) ratings per tree were similar (table 1). Quantities of flowering for each seed source (ovulate, staminate, and total), expressed as a percent of the plantation mean, are shown in the last three columns of table 1.

The differences in total quantity of flowering among the geographic areas were large (table 1, fig. 1). The 12 central Plains sources averaged 144% of the plantation mean, with source 720 of northern Nebraska bearing the maximum number (232% of the plantation mean) of both ovulate and staminate strobili. The northern Plains sources of eastern Montana also bore high numbers of strobili. Generally, lowest strobili production was in seed sources from the central and southern Rocky Mountains (67% and 56% of the plantation mean, respectively).

Correlations

Simple correlation coefficients between flowering data, tree heights, and two place-of-origin items are shown in table 2.

Tree Height and Seed Source Elevation

The average 13-year heights of trees in the plantation were negatively correlated with elevation of seed source (r = -0.66). Although this effect has been observed in provenance tests of some species, particularly in the western United States, Wright (1976) maintains that consistent elevational trends are generally lacking in provenance tests.

Flowering and Tree Heights

Percent of trees flowering was correlated with tree height (r = 0.51); seed sources having the tallest trees had the highest percent of flowering trees. Sources with the shortest trees had the lowest percent of flowering trees (table 1). For example, seed source 720 from Ainsworth, Nebr., which was the second tallest (116% of plantation mean or 14.9 feet), had the highest percent (98%) of trees flowering. At the other extreme seed source 857 from Buford, Wyo., which was the second shortest (80% of plantation mean or 10.3 feet), had only 40% of trees flowering (table 1).

Total quantity of flowering compared with seed source mean height produced an even higher correlation (r = 0.63, table 2). Although the percent of flowering trees and total quantity of flowering correlated reasonably well with mean heights, which, as noted above, were negatively correlated with seed source elevations, the quantity of ovulate and staminate flowering was distributed differently. Percent of trees with staminate strobili and quantity of staminate strobili were correlated with mean tree height (r = 0.56and 0.59, respectively), but percent of trees with ovulate strobili and quantity of ovulate strobili were not as highly correlated with mean heights (r = 0.31 and 0.40, respectively).

The major deviations in the correlations of flowering with tree height were the New Mexico and one Arizona seed sources which had low percentages and quantities of flowering, yet were above average in mean heights.

Flowering and Seed Source Elevation

All flowering traits were negatively correlated with seed source elevation, which, as noted previously, was negatively correlated with 13-year mean height. Total quantity of ovulate and staminate strobili was the most highly correlated flowering trait with seed source elevation (r = -0.72, table 2). Maximum quantities of flower production were mainly in seed sources from elevations less than 5,000 feet (1,524 m). At higher elevations, there was a wide range of flowering; but in general there was less flowering in the high elevation seed sources.

Flowering and Seed Source Latitude

Percent of trees flowering was correlated with seed source latitude (r = 0.56, table 2). Southern and central Rocky Mountain sources had the lowest percent of trees flowering, 45% and 55%, respectively. Only 13% of the trees in source 766 Ruidoso, N. Mex. had flowered. The highest flowering percentages were in sources from the central and northern Plains and the Bitterroot Valley of Montana. Five northwestern

		Seed or	rigin	
Item	13-year height	Elevation	Latitude	
13-year height		-0.66***	0.20	
Percent trees flowering	0.51***	-0.64***	0.56***	
Percent trees w/Q	0.31*	-0.53***	0.70***	
Percent trees w/o*	0.56***	-0.52***	0.07	
Quantity Q	0.40**	-0.59***	0.67***	
Quantity or	0.59***	-0.58***	0.11	
Total quantity Q + 🗸	0.63***	-0.72***	0.45***	

Table 2.—Simple correlation coefficients¹ (*r*) between flowering data and tree heights, and seed origin elevation and latitude

Nebraska sources from approximately 42° latitude, had a combined average of 89% of trees flowering (table 1).

Total quantity of flowering was not as highly correlated with seed source latitude (r = 0.45, table 2). The greatest quantity of flowering was in central Plains sources, and the next greatest quantity was in northern Plains sources. Southern latitude sources flowered least. Although central Rocky Mountain sources range in latitude from 38° to 45°, most of those sources were rated low to moderate in flowering.

The percent of trees with ovulate strobili and the quantity of ovulate flowering were highly correlated with seed source latitude (table 2). Staminate flowering, however, showed no correlation with the latitude of seed source.

Correlations between flowering and seed source latitudes would have been higher had the confounding effect of varying elevations not been present.

DISCUSSION AND CONCLUSIONS

These results are further evidence of strongly inherited traits in eastern range ponderosa pine populations. Climatic factors that vary with elevation and latitude of seed source are important in determining the range of genetic differences in height growth and flowering. These become apparent when these sources are grown together under uniform environmental conditions.

Because the plantation is at 1,100 feet elevation, all 50 seed sources are growing at an elevation considerably lower than that of the natural stands from which the seeds were collected. The major effect of these differences in elevation appears to be in the rate of tree growth and, consequently, in the total quantity of flowering as influenced by tree size. Most, although not all, low elevation sources were fast growers (tallest trees). The exceptions indicate that certain seed sources are not generally programed to grow fast, even under favorable environmental conditions. The relationship of flowering to latitude is somewhat different. The northern sources from Montana, which are adapted to longer day lengths at 46° to 48° latitude, now grow under shorter day lengths at 41° latitude. Conversely, the southern sources from new Mexico and Arizona, adapted to shorter day lengths at 32° to 37° latitude, now grow under longer day lengths at 41° latitude.

Mirov's (1956) observations indicated that flowering of pines was not affected by change in day length when various species, including ponderosa, were moved from their native habitat to Placerville, Calif. Mirov (1967) later concluded that pines appear to be neutral with respect to flowering and length of photoperiod.

Giertych (1967), however, states that short days promote ovulate flowering and long days promote staminate flowering in pines. This is in agreement with results of the present study. The northern seed sources from Montana, which now experience shorter days in the Nebraska plantation, are predominantly ovulate flowering, whereas the southern seed sources from New Mexico and Arizona, which now experience longer days in the Nebraska plantation, are higher in proportion of staminate flowering. This phenomenon was also observed with acorn squash and cucumber, monoecious plants, with promotion of male flowers under long days and female flowers under short days (Nitsch et al. 1952). Pharis et al. (1975) suggest that photoperiod possibly controls the endogenous concentration of gibberellin, influencing the effective level of auxin, which in turn determines the sex of flowers.

The flowering patterns observed in this study should not be considered unusual. Wright (1953) states that young eastern white pines (*Pinus strobus L.*) generally produce ovulate strobili almost exclusively for many years, whereas Korean pines (*Pinus koraiensis Sieb.* and Zucc.) have predominantly staminate strobili when young. Wright reported that in Scots pines some trees were predominantly staminate while others were predominantly ovulate. Thus, similar flowering patterns have been noted in other species of pines for several years after flowering begins.

Finally, a reexamination of one replication of the same plantation during late April 1982 indicated that the sexual orientation of the flowering pattern observed in 1978 is still present. Although total flowering per tree has increased, the trees from northern seed sources still produced almost exclusively ovulate flowers while trees from southern seed sources produced predominately staminate flowers.

LITERATURE CITED

- Giertych, Maciej M. 1967 Analogy of the difference between male and female strobilus in *Pinus* to the difference between long- and short-day plants. Canadian Journal of Botany 45:1907-1910.
- Mirov, N. T. 1956. Photoperiod and flowering of pines. Forest Science 2:328-332.
- Mirov, N. T. 1967. The genus Pinus. 602 p. Ronald Press Co., New York, N.Y.
- Nitsch, J. P., E. P. Kurtz, J. L. Liverman, and F. W. Went. 1952. The development of sex expression in cucurbit flowers. American Journal of Botany 39:32-43.

- Pharis, R. P., R. L. Wample, and A. Kamienska. 1975. Growth, development, and sexual differentiation in Pinus, with emphasis on the role of the plant hormone, gibberellin. p. 106-134. In Management of lodgepole pine ecosystems symposium proceedings. Washington State University, Pullman.
- Read, Ralph A. 1980. Genetic variation in seedling progeny of ponderosa pine provenances. Forest Science Monograph No. 23, 59 p.
- Righter, F. I. 1939. Early flowering production among the pines. Journal of Forestry 37:935-938.
- Wang, Chi-Wu. 1977. Genetics of ponderosa pine. USDA Forest Service Research Paper W0-34, 24 p. Washington, D.C.
- Wright, Jonathan W. 1953. Notes on flowering and fruiting of northeastern tress. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Station Paper No. 60, 38 p. Broomall, Pa.
- Wright, Jonathan W. 1976. Introduction to forest genetics. 463 p. Academic Press, Inc., New York, N.Y.